

Ortsgemeinde Schwabenheim über VG Gau-Algesheim Hospitalstr. 22 55435 Gau-Algesheim

Erschließung NBG "Am Klostergarten", OG Schwabenheim

- Vorplanung Verkehrsanlagen -

Anlage 1:

<u>Erläuterungsbericht</u>

<u>Aufgestellt:</u> Idar-Oberstein, 27.09.2023

Inhaltsverzeichnis

1	Allgemeines	3
2	Technische Beschreibung der Planungsmaßnahme Kreisverkehr	4
3	Emissionsbezogene Bewertung und Regelung gem. DWA-A-102	24
4	Rückhaltemulden	28
5	Beleuchtung	29
6	Kosten	29

1 **Allgemeines**

Am nördlichen Ortsrand der Gemeinde Schwabenheim ist die Erschließung eines Neubaugebiets, sowie der Neubau eines Lebensmittelmarkts geplant. Die Anbindung des Neubaugebietes und Lebensmittelmarkts an das überörtliche Straßennetz erfolgt über die Landesstraße "L 428"/ Ingelheimer Straße. Zur verkehrssicheren Zufahrt in das geplante Neubaugebiet ist ein Kreisverkehr vorzusehen, dessen Abmessungen mit dem LBM Worms in den Grundzügen abgestimmt sind.

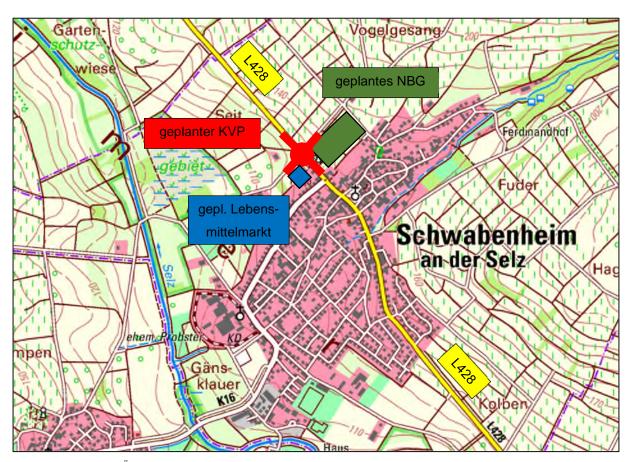


Bild 1: topographische Übersichtskarte

Der gesamte Ausbauumfang beinhaltet die Erneuerung des Straßenkörpers der "L 428 - Ingelheimerstraße" (inkl. Kreisverkehrsplatz), dem Ausbau eines Geh- und Radweges, die Anbindungsäste des Neubaugebiets bzw. Penny-Markts, sowie einem Regenwasserkanal für Oberflächenwässer inkl. Regenrückhaltebecken in Erdbauweise. Folgend ist die Vorplanung der Verkehrsanlagen erläutert.

2 Technische Beschreibung der Planungsmaßnahme Kreisverkehr

Grundlegende Beschreibung der Maßnahme

Ausbaulänge: ca. 252,50 m inkl. Kreisverkehrsplatz

o "Klostergarten" L = ca. 45,00 m

o L 428 "Schwabenheim" L = ca. 95,00 m

o Zufahrt "Penny-Markt" L = ca. 35,00 m

o L 428 "Grosswinternheim" L = ca. 77,50 m

Art des Ausbaus: Vollausbau, Erneuerung von Fahrbahn und Gehwege

Ausbaubreite: Neubaugebiet "Klostergarten" b = 6,00 m

L 182 nach "Schwabenheim" b = 6,00 m

Zufahrt "Penny-Markt" Einmündung

L 182 nach Grosswinternheim b = 5,50 m

Geh- und Radwege gem. Planung b = 2,50 m

Querneigung
 Einseitneigung/ Dachprofil Fahrbahn, Einseitneigung in Gehwegen

Entwässerung: Straßenabläufe über RRB in Vorfluter

Bord- und Rinnenanlagen: Kreisverkehrsplatz: Flachbordsteine F20/25 u. F30/25

Anbindungsäste: Rundbord R 18/22 u. Rinnenplatte 30 cm

■ Kreisverkehrsplatz: Ø = 30,00 m, Fahrbahn 8,00m (inkl. Innenring Gussasphalt

1,50 m), 14,00 m begrünte Mittelinsel,

Fahrbahnteiler (b = 2,50 m) an allen Einmündungen

Durchfahrtsbreiten Einbieger = 4,00 m (6,25 m)

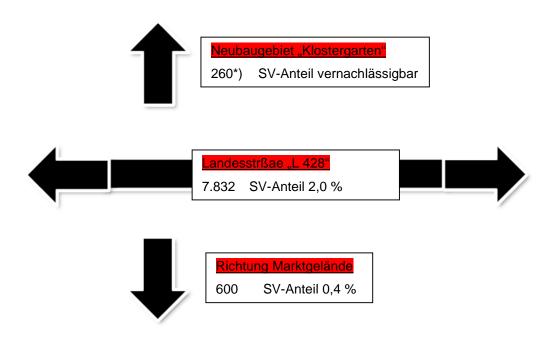
Abbieger = 4,25 - 4,75 m

Angepasst an Schleppkurven (Bemessungsfahrzeug Sattelzug)

Längsneigung ca. 6,0 %

Radfahrer/ Fußgänger: Querungsmöglichkeiten b = 4,00 m Fahrbahnteiler

Fußgängerübergänge mit Rollstuhlüberfahrstein 15/20


Radwege- und Gehwegeführung gem. Lageplan mit Anbindungen an Marktgelände und Friedhof. Ein- und Ausfädelstreifen für Radverkehr von Radwegekonzept auf L 182 (Richtung Schwabenheim)

Verkehrsbelastung (Daten von LBM Worms)

Ermittlung des Schwerlastverkehr-Anteils im neuen Knotenpunktbereich des Kreisverkehrsplatzes:

Verkehrsaufkommen gem. Auskunft LBM Worms aus dem Jahr 2015 im Bereich der L428

*) Neubaugebiet:

Ca. 43 Bauplätze mit geschätzten 6 Fahrzeugbewegungen/ 24 h = 258 Fz/ 24 h, gew. 260 Fz/ 24 h = DTV Anteil Schwerlastverkehr: wird mit < 1 %, 3 Fz/ 24 h als vernachlässigbar eingestellt

Ergebnis: DTV (SV) am Ast:

Landesstraße L 428 = 7.832 Kfz/ 24h x 2,0 % (SV) = 163 Fz/ 24h DTV gem. LBM Worms 2015

"Penny-Markt" = 600 Kfz/ 24h x 0,4 % (SV) = 2 Fz/ 24h Vorgabe Penny

NBG "Klostergarten" = 260 Kfz/24h x < 1.0 % (SV) = 3 Fz/24h Annahme

Summe = 8.692 Kfz/ 24h gew. 8.700 Kfz/ 24h

Ermittlung SV-Anteil:

8.700 Kfz/ 24h gem. Ergebnis: DTV (SV) am Ast mit 2% SV-Anteil = rd. 174 LKW

Querschnitt

Aufteilung der Querschnitte:

Regelquerschnitt RQ 01, Kreisverkehrsplatz, Gesamtbreite: 35,00 m

Tiefbordstein: 0,08 m (T 8/20)

Geh-/ Radweg: 2,22 m (Betonsteinpflaster)

Flachbordstein: 0,20 m (F 20/25)

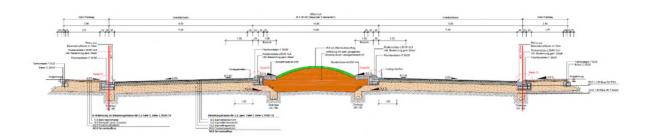
Rinne: 0,50 m (Gussasphalt)

Fahrbahn: 7,50 m (Gussasphaltbauweise)

Flachbordstein: 0,30 m (F 30/25)

Mittelinsel: 13,40 m (inkl. 2x 1,00 m Bankett)

Flachbordstein: 0,30 m (F 30/25)


Fahrbahn: 7,50 m (Gussasphaltbauweise)

Rinne: 0,50 m (Gussasphalt)

Flachbordstein: 0,20 m (F 20/25)

Geh-/ Radweg: 2,22 m (Betonsteinpflaster)

0,08 m (T 8/20) Tiefbordstein:

Hier:

Regelquerschnitt RQ 02, Fahrbahnteiler am KVP, Gesamtbreite: 16,25 m

0,08 m (T 8/20) Tiefbordstein:

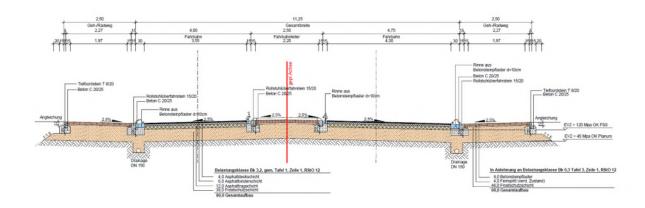
2,27 m (Betonsteinpflaster) Geh-/ Radweg:

Rollstuhlüberfahrstein: 0,15 m (RüS 15/20) 0,50 m (Gussasphalt) Rinne:

Fahrbahn: 3,35 m (Gussasphaltbauweise) Rinne: 0,15 m (Rinnenplatte 1-zeilig)

Rollstuhlüberfahrstein: 0,15 m (RüS 15/20)

Fahrbahnteiler: 2,20 m (Pflasterbauweise)


Rollstuhlüberfahrstein: 0,15 m (RüS 15/20)

Rinne: 0,15 m (Rinnenplatte 1-zeilig) Fahrbahn: 4,10 m (Gussasphaltbauweise)

Rinne: 0,50 m (Gussasphalt) Rollstuhlüberfahrstein: 0,15 m (RüS 15/20)

Geh-/ Radweg: 2,27 m (Betonsteinpflaster)

0,08 m (T 8/20) Tiefbordstein:

Bauklassenberechnung für Landesstraße "L 428"

Der Nachweis zur Befestigung des Oberbaues erfolgt gemäß den Richtlinien der RStO 12:

DTV 2015 = 8.692 Kfz/ 24h gew. rd. 8.400 Fzg/d - 2% SV-Anteil = rd. 174 LKW

Nachweis des Straßenaufbaues der

L 428

Ausgangsdaten:

Nutzungszeitraum	N=	30	Jahre	
Anzahlt der Fahrstreifen (beide Fahrtrichtungen)	2		f ₁₌	0,50
Breite der Fahrbahn mit der höchsten Verkehrsbelastung	ca. 3,00	m	f ₂₌	1,40
Höchstlängsneigung	2 - 4	%	f ₃₌	1,02

DTVsv im Zähljahr	2	2015	Jahr		174
DTVsv im 1. Nutzungs	sjahr (10%/a) 2	2025	Jahr	rd. DTVsv	192
mittlere jährliche Zunah	nme des Schwerve	erkehrs	3	p1-30	0,01
mittlere jährliche Zuwachsfaktor des Schwerverkehrs fz				fz	1,159
Achszahlfaktor	Aufgrund SV-An	nteil > 3	3,0 % (hier: 4,0 %)	fA	3,3
Lastkollektivquotient	Aufgrund SV-An	nteil > 3	3,0 % (hier: 4,0 %)	qBm	0,23

Frostempfindlichkeitsklasse (F2 oder F3)			50-60
Frosteinwirkung	Zone II	[cm]	+ 5
kleinräumige Klimaunterschiede		[cm]	0
Wasserverhältnisse im Untergrund		[cm]	0
Lage der Gradiente		[cm]	0
Entwässerung der Fahrbahn		[cm]	-5

Bestimmung von B bei konstanten Faktoren:

 $B = N \cdot (DTV^{(SV)} \cdot f_A) \cdot q_{Bm} \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_Z \cdot 365$ $\mathsf{B} = 30 \cdot (192 \cdot 3,3) \cdot 0,23 \cdot 0,50 \cdot 1,40 \cdot 1,02 \cdot 1,159 \cdot 365$

Ergebnisse: B1-30 =1,32 Mio. Belastungsklasse: Bk 1,8

Gemäß RStO 2012, Ausgabe 2020, Punkt 2.5.1 "Fahrbahnen" ist für Kreisverkehrsflächen die nächst höhere Belastungsklasse vorzusehen: Belastungsklasse: Bk 3,2

Gesamtdicke des frostsicheren Oberbaus nach RStO 2012, Tafel 1, Zeile 1:

gewählte D = 65 cm: Asphaltdeckschicht: 4 cm

> Asphaltbinderschicht **6** cm

Asphalttragschicht (120 MPa) **12** cm

Frostschutzschicht (120 MPa) 43 cm

65 cm

Erläuterung zur Bauklassenberechnung:

Achszahlfaktor f_A

Straßenklasse	Faktor f _A
Bundesautobahnen	4,5
Bundesstraßen	
bzw. Landes- und Kreisstraßen	4,0
sowie kommunale Straßen mit SV-Anteil > 4 %	
Landes- und Kreisstraßen	
bzw. kommunale Straßen mit SV-Anteil ≤ 4 %	3,3

Bild 3: Straßenklasse

Lastkollektivquotient q_{Bm}

Straßenklasse	Quotient qBm
Bundesautobahnen	0,33
Bundesstraßen	
bzw. Landes- und Kreisstraßen	0,25
sowie kommunale Straßen mit SV-Anteil > 4 %	
Landes- und Kreisstraßen	0.33
bzw. kommunale Straßen mit SV-Anteil ≤ 4 %	0,23

Bild 4: Lastkollektivquotient

Fahrstreifenfaktor f₁ zur Ermittlung des DTV ^(sv)

Zahl der Fahrstreifen	Faktor f₁ bei Erfassung des DTV für			
im Querschnitt/ in Fahrtrich- tung	beide Fahrtrichtungen (Querschnitt)	jede Fahrtrichtung getrennt (Fahrtrichtung)		
1		4.0		
2		1,0		
3	0,5	0,9		
4				
5		0,85		
6 und mehr	0,45			

Bild 5: Fahrstreifenfaktor

Fahrstreifenbreitenfaktor f₂

Fahrstreifenbreite [m]	Faktor f ₂
unter 2,50	2,00
2,50 bis unter 2,75	1,80
2,75 bis unter 3,25	1,40
3,25 bis unter 3,75	1,10
3,75 und mehr	1,00

Bild 6: Fahrstreifenfaktor

Steigungsfaktor f₃

Höchstlängsneigung [%]	Faktor f ₃
unter 2	1,00
2 bis unter 4	1,02
4 bis unter 5	1,05
5 bis unter 6	1,09
6 bis unter 7	1,14
7 bis unter 8	1,20
8 bis unter 9	1,27
9 bis unter 10	1,35
10 und mehr	1,45

Bild 7: Steigungsfaktor

Mittlere jährliche Zunahme des Schwerverkehrs p*)

Straßenklasse	р	
Bundesautobahnen	0,03	
Bundesstraßen	0,02	
Landes- und Kreisstraßen	0,01	
*) Bei der Ermittlung der Verkehrsbelastung des zu dimensionierenden Fahrstreifens ist dessen Kapazität zu beachten.		

Bild 8: Straßenklasse

2152 Erschließung NBG "Am Klostergarten", OG Schwabenheim Erläuterungsbericht Verkehrsanlagen Vorplanung Projekt-Nr.: Projekt: Hier:

Mittlerer jährlicher Zuwachsfaktor des Schwerverkehrs fz

	Mittlere jährliche Zunahme des Schwerverkehrs p			
N [a]	0,01	0,02	0,03	
5	1,020	1,041	1,062	
10	1,046	1,095	1,146	
15	1,073	1,153	1,240	
20	1,101	1,215	1,344	
25	1,130	1,281	1,458	
30	1,159	1,352	1,586	

Bild 9: Mittl. jährl. Zuwachsfaktor des Schwerverkehrs

Gemäß RStO ist auch die Entwurfssituation in die Festlegung der Belastungsklasse mit einzubeziehen. Unseres Erachtens ist die neu herzustellende Verbindungsstraße mindestens als dörfliche Hauptstraße zu charakterisieren.

Mögliche Belastungsklassen für die typischen Entwurfssituationen nach der RASt

Typische Entwurfssituation	Straßenkategorie	Belastungsklasse
Anbaufreie Straße	VS II, VS III	Bk10 bis Bk100
Verbindungsstraße	HS III, HS IV	Bk3,2/Bk10
Industriestraße	HS IV, ES IV, ES V	BK3,2 bis Bk100
Gewerbestraße	HS IV, ES IV, ES V	Bk1,8 bis Bk 100
Hauptgeschäftsstraße	HS IV, ES IV	Bk1,8 bis Bk10
Örtliche Geschäftsstraße	HS IV, ES IV	Bk1,8 bis Bk10
Örtliche Einfahrtsstraße	HS III, HS IV	Bk3,2/Bk10
Dörfliche Hauptstraße	HS IV, ES IV	Bk1,0 bis BK3,2
Quartiersstraße	HS IV, ES IV	Bk1,0 bis Bk3,2
Sammelstraße	ES IV	Bk1,0 bis Bk3,2
Wohnstraße	ES V	Bk0,3/Bk1,0
Wohnweg	ES V	Bk0,3

Bild 10: Mögliche Belastungsklasse

Gemäß o. a. Tabelle sollte demnach die Belastungsklasse Bk 1,0 bis 3,2 zugrunde gelegt werden.

Ergebnis:

Gemäß RStO 2012, Ausgabe 2020, Punkt 2.5.1 "Fahrbahnen" ist für Kreisverkehrsflächen die nächst höhere Belastungsklasse vorzusehen:

Belastungsklasse Bk 3,2

Erschließung NBG "Am Klostergarten", OG Schwabenheim Erläuterungsbericht Verkehrsanlagen Vorplanung Projekt: Hier:

Bauklasse/ Oberbau

Bauklasse

Für die Wahl des Oberbaus wird die RStO 12 (Richtlinien für die Standardisierung des Oberbaues von Verkehrsflächen) zugrunde gelegt.

Der Planbereich im Raum "Schwabenheim" liegt gem. Bild 6 der RStO 12, "Frosteinwirkungszone", in Zone II.

Die Frostempfindlichkeitsklasse wird aufgrund einer noch nicht gegebenen Baugrunduntersuchung zwischen F2 und F3 angenommen.

In Annahme der zuvor festgelegten Belastungsklasse 3,2 ergibt sich gemäß folgender Tabelle eine Mindestdicke von ca. 60 cm.

Ausgangswerte für die Bestimmung der Mindestdicke des frostsicheren Oberbaus

Frostempfindlich-	Dicke in cm bei Belastungsklasse						
keitsklasse	Bk100 bis Bk10	BK3,2 bis Bk1,0	Bk0,3				
F2	55	50	40				
F3	65	60	50				

Bild 11: Ausgangswerte Mindestdicke frostsicherer Oberbau

Im Mittel wird von einer Oberbaumindestdicke von 50-60 cm ausgegangen.

Gemäß den getroffenen Annahmen wird diese Mindestdicke um 10 cm erhöht.

Mehr- oder Minderdicken infolge örtlicher Verhältnisse

Ört	Örtliche Verhältnisse A B			С	D	Е
Frost-	Zone I	± 0 cm				
einwirkung	Zone II	+ 5 cm				
eniwirkung	Zone III	+ 15 cm				
	ungünstige Klimaeinflüsse z. B.					
	durch Nordhang oder in Kammla-		+ 5 cm			
kleinräumige Kli-	gen von Gebirgen					
maunterschiede	keine besonderen Klimaeinflüsse		± 0 cm			
maamoroomoao	günstige Klimaeinflüsse bei ge-					
	schlossener seitlicher Bebauung		- 5 cm			
	entlang der Straße					
	kein Grund- und Schichtenwasser					
Wasserverhält-	bis in eine Tiefe von 1,5 m unter			± 0 cm		
nisse im Unter-	Planum					
grund	Grund- oder Schichtenwasser					
9.44	dauernd oder zeitweise höher als			+ 5 cm		
	1,5 m unter Planum					
Lage der	Einschnitt, Anschnitt				+ 5 cm	
Gradiente	Geländehöhe bis Damm ≤ 2,0 m				± 0 cm	
	Damm > 2,0 m				- 5 cm	
	Entwässerung der Fahrbahn über					
Entwässerung der	Mulden, Gräben bzw. Böschun-					± 0 cm
Fahrbahn/	gen					
Ausführung der	Entwässerung der Fahrbahn und					
Randbereiche	Randbereiche über Rinnen bzw.					- 5 cm
	Abläufe und Rohrleitungen					

Bild 12: Mehr- oder Minderdicke infolge örtlicher Verhältnisse

$A + B + C + D + E = + \Sigma 0 \text{ cm} \rightarrow \underline{\text{Gesamtsumme 60 cm}}$

Ergebnis:

Die Gesamtdicke des frostsicheren Oberbaus, einschließlich der Mehr- oder Minderdicken infolge örtlicher Verhältnisse wird nach Absprache mit dem LBM Worms mit 65 cm festgelegt.

Hier: Erläuterungsbericht Verkehrsanlagen Vorplanung

Projekt: Erschließung NBG "Am Klostergarten", OG Schwabenheim

Oberbau/ Aufbau

Die Verkehrsflächen erhalten einen frostsicheren Oberbau nach RStO 2012.

a) Fahrbereich Kreisverkehr

Belastungsklasse Bk 3,2, gem. Tafel 1, Zeile 1, RStO 12:

4,0 cm Asphaltdeckschicht 6,0 cm Asphaltbinderschicht Asphalttragschicht 12,0 cm 43,0 cm Frostschutzschicht 65,0 cm Gesamtaufbau

b) Fahrbereich Anbindungsast L 428 (Schwabenheim + Grosswinternheim u. Marktgelände)

Belastungsklasse Bk 1,8, gem. Tafel 1, Zeile 1, RStO 12:

4,0 cm Asphaltdeckschicht Asphalttragschicht 16,0 cm 45,0 cm Frostschutzschicht 65,0 cm Gesamtaufbau

b) Fahrbereich Anbindungsast Neubaugebiet

Belastungsklasse Bk 1,0, gem. Tafel 1, Zeile 1, RStO 12:

4,0 cm Asphaltdeckschicht 14,0 cm Asphalttragschicht 47,0 cm Frostschutzschicht 65,0 cm Gesamtaufbau

d) Geh-/ Radweg

In Anlehnung an Belastungsklasse Bk 0,3, Tafel 3, Zeile 1, RStO 12:

8,0 cm	Betonsteinpflaster
4,0 cm	Feinsplitt (verd. Zustand)
53,0 cm	Frostschutzschicht
65,0 cm	Gesamtaufbau

Projekt-Nr.: 2152

Projekt: Erschließung NBG "Am Klostergarten", OG Schwabenheim Hier: Erläuterungsbericht Verkehrsanlagen Vorplanung

Geh- und Radwegeverbindung

In der geplanten Geh- und Radwegeverbindung soll die vom LBM Worms geplante überörtliche Radwegeverbindung eingebunden werden. Hierzu wird der von Grosswinternheim kommende Radweg aufgenommen und außerhalb des Kreisverkehres über den Geh- und Radweg geführt. Vor Schwabenheim wird der Radverkehr mit Hilfe eines Einfädelstreifens (Länge = 20 m) in den Straßenverkehr integriert. Der von Schwabenheim kommende Radverkehr wird über einen Ausfädelstreifen (Länge = 20 m) auf den Geh- und Radweg geleitet. Zur verkehrssicheren Querung der einzelnen Äste werden Querungsmöglichkeiten mit einer Breite von 4,00 m in den Fahrbahnteiler ausgebildet. Diese Querungsmöglichkeiten werden barrierefrei mit Rollstuhlüberfahrsteinen und taktilen Leitelementen ausgeführt.

Entwässerung

Die Entwässerung des Planums und der Verkehrsfläche wird durch die vorhandene Längsneigung, sowie durch eine mindestens 2,5% - tige Querneigung in eine geplante Längsmuldenrinne gewährleistet. Zur Planumsentwässerung werden Drainageleitungen DN 150 an den Tiefenlinien angeordnet. Anfallendes Oberflächen- und Sickerwasser wird mittels punktueller Straßenabläufe gesammelt und getrennt an das neu zu planende Regenrückhaltebecken angeschlossen.

Ermittlung Straßenablaufabstand:

Die Entwässerung des Planums und der Verkehrsflächen wird durch die vorhandene Längsneigung sowie durch eine mindestens 2,5 %-tige Querneigung gewährleistet. Zur Planumsentwässerung werden Drainageleitungen DN 150 an den Tiefenlinien angeordnet, die an die Straßenabläufe angeschlossen werden. Anfallendes Oberflächen- und Sickerwasser wird mittels punktueller Straßenabläufe gesammelt und an das neu geplante Regenwassersystem des AVUS Abwasserzweckverband "Untere Selz" angeschlossen.

Die Bemessung des Abstandes der Straßenabläufe wird nach REwS, Ausgabe 2021, Anhang 7 durchgeführt. Grundlage für die Bemessung sind die Querschnitte, der Höhenplan sowie der Lageplan der aktuellen Verkehrsplanung.

Als weitere Bemessungsgrundlage dient die ATV-A-118 Tabelle 2 und Tabelle 4, sowie die lokalen Niederschlagsdaten aus dem KOSTRA-DWD 2020 4.1.1 Verzeichnis.

ATV A-118, Tabelle 2

Häufigkeit der Bemessungs- regen ¹⁾ (1-mal in "n" Jahren)	Ort	Über- flutungs- häufigkeit (1-mal in "n" Jahren
1 in 1	Ländliche Gebiete	1 in 10
1 in 2	Wohngebiete	1 in 20
1 in 2	Stadtzentren, Industrie- und Gewerbegebiete: – mit Über- flutungsprüfung,	1 in 30
1 in 5	 ohne Über- flutungsprüfung 	-
1 in 10	Unterirdische Verkehrsanlagen, Unterführungen	1 in 50

Bild 13: ATV A-118, Tabelle 2

REwS, Ausgabe 2021, Anhang 7, Tabelle 1

	Gerinne- quer- neigung q Längsneigung s _f [%					[%]	%]		
		0,0	0,2	0,5	1.0	2,0	4,0	6,0	8,0
	%	1/s	1/5	1/5	1/5	1/5	1/5	1/5	1/5
Aufsatz	2,5	2,5	2,6	2,6	2,4	2,4	24	2,4	2,4
300x500	6,0	5,4	5.6	5,8	5.8	7,2	6.4	6.4	3,4
DIN 19594	10,0	9,7	11,0	11,4	13,4	10,7	8,5	6,0	4.4
	15,0	14.9	14.7	13,9	9.9	6,0	5.0	5,0	4.9
Aufsatz	2,5	4,3	4,3	4,4	4.5	5,0	5,4	6,0	6,4
500x500	6,0	9,8	10,7	11,3	14,0	9,6	6.1	6,4	6,6
DIN 19583	10,0	17,3	17,8	17,2	14,6	10,2	7.2	6,8	7,0
	15,0	16,1	14,4	12,9	11,2	8,8	6,5	6,0	6,0
	2,5	5.0	4.7	4,6	4,3	5,1	5,5	5,4	5,2
Aufsatz	6,0	12,5	12,4	13,4	14,4	16,8	19.7	19,5	19,4
500x780	10,0	28,0	27,6	27.4	27,9	30,0	25,3	20,0	16,1
	15,0	35,3	35,2	34,8	34,0	32,4	22,8	13,0	8,0
Straßen-	2,5	4,5	5,3	4,6	2,8	2.2	1,5	1,2	0,8
ablaufbucht LI	4,0	9,1	8,4	6,7	5,2	3,6	2,4	1,9	1,0
$L_B = 1.8 \text{ m}$	6,0	16.0	14,2	11,8	9.2	5,9	4.0	3,4	3,1
Straßen-	2,5	7,0	8,0	8,8	8,0	5,8	3,5	2,0	1,6
ablaufbucht LII	4,0	16,4	17,3	17,6	13.0	8.7	5,6	3,8	2,6
$L_B = 2.7 \text{ m}$	6,0	29,0	28,4	26,9	24,0	16,5	9.4	7,1	5,7
Straßen-	2,5	6,0	7,0	7,7	8,6	9,6	6,5	3,5	2,0
ablaufbucht LIII	4,0	13,0	13,6	14,5	16,0	18,3	14.7	10,3	7,1
$L_B = 4.2 \text{ m}$	6,0	28.0	27.6	26,2	22.0	13,0	8.4	7,0	6,2

Bild 14: REwS, Ausgabe 2021, Anhang 7, Tabelle 1

ATV A-118, Tabelle 4

mittlere Geländeneigung	Befestigung	kürzeste Regendauer
- 4.07	≤ 50 %	15 min
< 1 %	> 50 %	10 min
1 % bis 4 %		10 min
> 4 %	≤ 50 %	10 min
> 4 70	> 50 %	5 min

Bild 15: ATV A-118, Tabelle 4

Projekt-Nr.:

Erläuterungsbericht Verkehrsanlagen Vorplanung

Regenspende:

Die Regenspenden werden aus dem KOSTRA-DWD 2020, Version 4.1.1 Kartenwerk (Koordinierte-Starkniederschlags-Regionalisierungs-Auswertungen) der Fa. itwh GmbH ermittelt. In Tabelle 1 und 2 sind die oberen und unteren Grenzwerte für verschiedene Regenereignisse aufgeführt. Die Niederschlagsspenden beziehen sich auf den Bereich Schwabenheim, Rasterfeld 116, Zeile 163.

INDEX RC Rasterfeld : Spalte 116, Zeile 163 : 163116

Ortsname : Schwabenheim an der Selz (RP)

Bemerkung

Dauerstufe D			Niede	erschlagshöhen	hN [mm] je Wie	ederkehrinterva	IIT [a]		
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	7,8	9,5	10,6	12,0	14,1	16,2	17,6	19,4	22,0
10 min	9,9	12,1	13,4	15,2	17,8	20,5	22,3	24,6	27,8
15 min	11,1	13,5	15,1	17,1	20,0	23,0	24,9	27,5	31,2
20 min	11,9	14,6	16,2	18,4	21,5	24,7	26,8	29,6	33,6
30 min	13,1	16,0	17,8	20,2	23,7	27,2	29,5	32,6	36,9
45 min	14,3	17,5	19,5	22,1	25,9	29,8	32,3	35,6	40,4
60 min	15,2	18,6	20,7	23,5	27,5	31,6	34,3	37,8	42,9
90 min	16,5	20,2	22,5	25,5	29,8	34,3	37,2	41,0	46,5
2 h	17,5	21,4	23,8	27,0	31,6	36,3	39,4	43,4	49,3
3 h	18,9	23,1	25,7	29,2	34,1	39,2	42,6	47,0	53,3
4 h	19,9	24,4	27,2	30,8	36,0	41,4	45,0	49,6	56,3
6 h	21,5	26,3	29,3	33,3	38,9	44,7	48,6	53,6	60,7
9 h	23,2	28,4	31,6	35,9	42,0	48,3	52,4	57,8	65,5
12 h	24,5	30,0	33,4	37,8	44,3	50,9	55,3	60,9	69,1
18 h	26,4	32,3	36,0	40,8	47,7	54,9	59,6	65,7	74,5
24 h	27,8	34,1	37,9	43,0	50,3	57,9	62,8	69,3	78,6
48 h	31,6	38,7	43,1	48,9	57,2	65,8	71,4	78,7	89,3
72 h	34,1	41,7	46,5	52,7	61,6	70,9	76,9	84,8	96,2
4 d	35,9	44,0	49,0	55,5	65,0	74,7	81,1	89,5	101,4
5 d	37,4	45,8	51,0	57,9	67,7	77,9	84,5	93,2	105,7
6 d	38,7	47,4	52,8	59,8	70,0	80,5	87,4	96,4	109,3
7 d	39,8	48,8	54,3	61,6	72,0	82.8	89,9	99,2	112,4

Tabelle 1: Auszug aus KOSTRA-DWD 2020

Dauerstufe D			Nieders	chlagspenden r	N [l/(s·ha)] je V	Viederkehrinter	vall T [a]		
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	260,0	316,7	353,3	400.0	470,0	540,0	586,7	646,7	733,3
10 min	165,0	201,7	223,3	253,3	296,7	341,7	371,7	410,0	463,3
15 min	123,3	150,0	167,8	190,0	222,2	255,6	276,7	305,6	346,7
20 min	99,2	121,7	135,0	153,3	179,2	205,8	223,3	246,7	280,0
30 min	72,8	88,9	98,9	112,2	131,7	151,1	163,9	181,1	205,0
45 min	53,0	64,8	72,2	81,9	95,9	110,4	119,6	131,9	149,6
60 min	42,2	51,7	57,5	65,3	76,4	87,8	95,3	105,0	119,2
90 min	30,6	37,4	41,7	47,2	55,2	63,5	68,9	75,9	86,1
2 h	24,3	29,7	33,1	37,5	43,9	50,4	54,7	60,3	68,5
3 h	17,5	21,4	23,8	27,0	31,6	36,3	39,4	43,5	49,4
4 h	13,8	16,9	18,9	21,4	25,0	28,8	31,3	34,4	39,1
6 h	10,0	12,2	13,6	15,4	18,0	20,7	22,5	24,8	28,1
9 h	7,2	8,8	9,8	11,1	13,0	14,9	16,2	17,8	20,2
12 h	5,7	6,9	7,7	8,8	10,3	11,8	12,8	14,1	16,0
18 h	4,1	5,0	5,6	6,3	7,4	8,5	9,2	10,1	11,5
24 h	3,2	3,9	4,4	5,0	5,8	6,7	7,3	8,0	9,1
48 h	1,8	2,2	2,5	2,8	3,3	3,8	4,1	4,6	5,2
72 h	1,3	1,6	1,8	2,0	2,4	2,7	3,0	3,3	3,7
4 d	1,0	1,3	1,4	1,6	1,9	2,2	2,3	2,6	2,9
5 d	0,9	1,1	1,2	1,3	1,6	1,8	2,0	2,2	2,4
6 d	0,7	0,9	1,0	1,2	1,4	1,6	1,7	1,9	2,1
7 d	0,7	0,8	0,9	1,0	1,2	1,4	1,5	1,6	1,9

Tabelle 2 Auszug aus KOSTRA-DWD 2020

Ermittlung Straßenablaufabstand (Achse 101/102 – einseitiger Geh- und Radweg)

Folgend wird der erforderliche Abstand für die mittlere Regellängsneigung von ca.4,0 % berechnet.

Ablauftyp I (300/500)

Fahrbahnlängsneigung $s_f = ca. 4,0 \%$ Gerinnequerneigung q = ca. 6,0 %

Breite der zu entwässernden Fläche: Spitzenabflussbeiwert

 $\begin{array}{lll} \text{Fahrbahn} & \text{B}_{\text{St,FB}} = \text{i.M. 8,50 m} & \Psi_{\text{s, FB}} = 0,90 \\ \\ \text{Insel} & \text{B}_{\text{St,Insel}} = 2,50 \text{ m} & \Psi_{\text{s, FB}} = 0,90 \\ \\ \underline{\text{Geh- und Radweg}} & \text{B}_{\text{St,RW}} = 2,50 \text{ m} & \Psi_{\text{s, GB}} = 0,90 \\ \end{array}$

Summe $B_{St} = 13,50 \text{ m}$

Gemittelter Ψ : $\frac{8,5 \times 0,9+2,5 \times 0,9+2,5 \times 0,9}{13,50} = 0,90$ [-]

Sicherheitsfaktor (Vorgabe gem. RAS-EW) K = 1,50

gewählt: unvollständige Systemauslastung (QA = QZ)

Maximaler Gerinnezufluss q_s : $Q_A = 6.4 \text{ l/s}$ (RAS-Ew, Anhang 8, Tabelle 1 für

(100 %iges Leistungsvermögen) q = 6.0 % und sf = ca. 4.0 %

allgemeine Bemessungsregen r_{D,n}

Maßgebende Regendauer D = 10 min. (DWA-A118, Tabelle 4, Geländeneigung 1%-4%)

Maßgebende Häufigkeit n= 0,2 (DWA-A118, Tabelle 2: Neubaugebiet, alle 5

Jahre, da ohne Überflutungsprüfung)

Bemessungsregen $r_{10(0,2)} = 253,3 \text{ l/(s*ha)}$ gem. KOSTRA DWD 2020

Bemessungszufluss qs:

 $q_{s} = Grundformel = q_{s} = \frac{\Psi x r D (n) x BSt x K}{10000} = \frac{0.9 x 253.3 x 13.50 x 1.50}{10000} \qquad q_{s} = 0.462$

Straßenablauf L:

 $L_{r5 (n=0,2)} = \frac{QA}{qs} = \frac{6.4 l/s}{0.462 l/(sxm)} = 13.85 m$ gew. 13.00 m

Ermittlung Straßenablaufabstand (Achse 104 – ohne Geh- und Radweg)

Folgend wird der erforderliche Abstand für die mittlere Regellängsneigung von ca.4,0 % berechnet.

Ablauftyp I (300/500)

Fahrbahnlängsneigung = ca. 4,0 %Gerinnequerneigung = ca. 6,0 %q

Breite der zu entwässernden Fläche: Spitzenabflussbeiwert

 $\Psi_{s, FB} = 0.90$ Fahrbahn $B_{St,FB} = i.M. 8,50 \text{ m}$ $\Psi_{s. FB} = 0.90$ $B_{St,Insel} = 2,50 \text{ m}$ Insel

Summe Bst = 11.00 m

Gemittelter Ψ : $\frac{8,5 \times 0.9 + 2,5 \times 0.9 +}{11.00} = 0.90$ [-]

Sicherheitsfaktor (Vorgabe gem. RAS-EW) K = 1,50

gewählt: unvollständige Systemauslastung (QA = QZ)

 $Q_A = 6.4 \text{ l/s}$ (RAS-Ew, Anhang 8, Tabelle 1 für Maximaler Gerinnezufluss qs: (100 %iges Leistungsvermögen) q = 6.0 % und sf = ca. 4.0 %

allgemeine Bemessungsregen rD,n

Maßgebende Regendauer D = 10 min.(DWA-A118, Tabelle 4, Geländeneigung 1%-4%)

n = 0.2(DWA-A118, Tabelle 2: Neubaugebiet, alle 5 Maßgebende Häufigkeit

Jahre, da ohne Überflutungsprüfung)

Bemessungsregen $r_{10(0,2)} = 253,3 \text{ l/(s*ha)}$ gem. KOSTRA DWD 2020

Bemessungszufluss qs:

 $q_s = Grundformel = q_s = \frac{\Psi x r D (n) x BSt x K}{10000} = \frac{0.9 x 253.3 x 11.00 x 1.50}{10000}$ $q_s = 0.376$

Straßenablauf L:

 $L_{r5 (n=0,2)} = \frac{QA}{qs} = \frac{6.4 l/s}{0.376 l/(sxm)} = 17.02 m$ gew. 17,00 m

Ermittlung Straßenablaufabstand (Geh- und Radwege am Hochrand)

Folgend wird der erforderliche Abstand für die mittlere Regellängsneigung von ca.4,0 % berechnet.

Ablauftyp I (300/500)

Fahrbahnlängsneigung = ca. 4,0 %Gerinnequerneigung = ca. 6,0 %

Breite der zu entwässernden Fläche:

Spitzenabflussbeiwert

 $\Psi_{s, GB} = 0.90$ Geh- und Radweg $B_{St,RW} = 2,50 \text{ m}$

Summe Bst = 2,50 m

Gemittelter Ψ : $\frac{2.5 \times 0.9}{2.50} = 0.90$ [-]

Sicherheitsfaktor (Vorgabe gem. RAS-EW)

K = 1.50

gewählt: unvollständige Systemauslastung (Q_A = Q_Z)

Maximaler Gerinnezufluss qs: $Q_A = 6.4 \text{ l/s}$ (RAS-Ew, Anhang 8, Tabelle 1 für (100 %iges Leistungsvermögen) q = 6.0 % und sf = ca. 4.0 %

allgemeine Bemessungsregen rD,n

Maßgebende Regendauer D = 10 min.(DWA-A118, Tabelle 4, Geländeneigung 1%-4%)

Maßgebende Häufigkeit n = 0.2(DWA-A118, Tabelle 2: Neubaugebiet, alle 5

Jahre, da ohne Überflutungsprüfung)

Bemessungsregen $r_{10(0,2)} = 253,3 \text{ l/(s*ha)}$ gem. KOSTRA DWD 2020

Bemessungszufluss qs:

 $q_s = Grundformel = q_s = \frac{\Psi x r D(n) x BSt x K}{10000} = \frac{0.9 x 253.3 x 2.50 x 1.50}{10000}$ $q_s = 0.086$

Straßenablauf L:

 $L_{r5 (n=0,2)} = \frac{QA}{qs} = \frac{6.4 l/s}{0.086 l/(sxm)} = 74.42 m$ gew. 70,00 m Erschließung NBG "Am Klostergarten", OG Schwabenheim Erläuterungsbericht Verkehrsanlagen Vorplanung

Bemessung der Regenrückhaltemulden

Alle im Plangebiet anfallenden Oberflächenwässer werden in eine Rückhaltemulde geleitet, deren Volumen für ein 20-jähriges Regenereignis ausgelegt ist. Das Rückhalteelement erhält einen Drosselabfluss zur zeitverzögerten Entleerung, der mit 1,4 l/s festgelegt wurde. Als Bemessungsdrosselabfluss wurden 10,0 l/(s·ha) angenommen.

Die Bemessung der Rückhaltemulden wurde mit dem Programm Rebeck, Version 1.2 der Fa. REHM durchgeführt.

Einzelbeckenberechnung gem. DWA-A 117

Becken:	1	Abfluss nach:	0		
Bezeichnung:	RRB KVP				
Bemessungsg	jrundlagen				
1) Fläche des k	analisierten Einz	ugsgebietes		A _{E,k} =	0,14 ha
2) Befestigte Fl	läche			A _{E,b} =	0,14 ha
3) Mittlerer Abf	lussbeiwert der b	efestigten Fläche		$\psi_{m,b} =$	0,900 -
4) Nicht befesti	gte Fläche			$A_{E,nb} =$	0,00 ha
5) Mittlerer Abf	lussbeiwert der n	icht befestigten Fläche		$\psi_{m,nb} =$	0,000 -
6) Rechnerisch	e Fließzeit im Ka	nalnetz bei Vollfüllung		t _f =	1,70 min
7) Mittlerer tägl	icher Trockenwet	terabfluss		$Q_{T,d,aM} =$	0,01 l/s
8) Drosselabflu	ISS			$Q_{Dr} =$	1,40 l/s
9) Zuschlagsfa	ktor			$f_z =$	1,20 -
Berechnungse	ergebnisse				
Undurchlässige	e Fläche: A _u = A _{E,}	b * Ψ _{m,b} + Α _{E,nb} * Ψ _{m,nb}		$A_u =$	0,13 ha
Regenanteil de	r Drosselabflusss	spende q _{Dr,R,u}		$q_{Dr,R,u} =$	10,69 l/s·ha
Abminderungst	faktor aus t _f = 1,7	0 min und n = 0,20/a		f _A =	1,000 -
Gewählter Nied	derschlag:		Kos	tra DWD 2020	
Überschreitung	shäufigkeit:			n = 0.200/a	

Dauerstufe	Niederschlags- höhe	Zugehörige Regenspende	Drosselabfluss- spende	Differenz	Spez. Speicher- volumen
D	hN	r	q _{Dr,R,u}	r - q _{Dr,R,u}	$V_{s,u}$
min, h	mm	l/s·ha	l/s·ha	l/s·ha	m³/ha
20 min	18,4	153,3	10,7	142,6	205
30 min	20,2	112,2	10,7	101,5	219
45 min	22,1	81,9	10,7	71,2	231
60 min	23,5	65,3	10,7	54,6	236
90 min	25,5	47,2	10,7	36,5	237
2 h	27,0	37,5	10,7	26,8	232
3 h	29,2	27,0	10,7	16,3	212
4 h	30,8	21,4	10,7	10,7	185
6 h	33.3	15.4	10.7	4.7	122

Erforderliches spezifisches Volumen Erforderliches Rückhaltevolumen $V = V_{s,u} \cdot A_u$

 $V_{su} = 237 \text{ m}^3/\text{ha}$ $V = 31 \text{ m}^3$

Bild 16: Einzelbeckenberechnung gem. DWA-A 117.

Hier:

Erschließung NBG "Am Klostergarten", OG Schwabenheim Erläuterungsbericht Verkehrsanlagen Vorplanung

Herleitung der einzelnen Eingabewerte zur Einzelbeckenberechnung:

Für die Bemessung der notwendigen Rückhaltung wird nur die Mehrversiegelung durch die neue Knotenpunktsplanung in Ansatz gebracht.

1) Flächen-Einzugsgebiet:

Gesamtfläche neu rd. 2.685 m²

abzgl. Fläche alt rd. $1.330 \text{ m}^2 = 1.355 \text{ m}^2$

= 0.14 ha

2) Befestigte Fläche (gem. Tabelle):

Summe von Verkehrsfläche = 1.355 m²

= 0.14 ha

3) Mittlerer Abflussbeiwert der befestigten Fläche (gem. Tabelle):

Für Verkehrsflächen gem. ATV A 138

Gew. Ψ = 0,90 [-]

4) Nicht befestigte Fläche (gem. Tabelle):

entfällt

5) Mittlerer Abflussbeiwert der nicht befestigten Fläche:

entfällt

6) Rechnerische Fließzeit: (gem. Lageplan) ca. 100 m x 1 s/m = 100 Sek.

= <u>1,70 Minuten</u>

7) Trockenwetterabfluss:

QH + QG + QF mit QH + QG = 0 und QF = qF, T x $A_{E, K}$

= 0,05 l/(s*ha) (gem. A 117) x 0,14 ha

= 0.01 l/s


8) <u>Drosselabfluss:</u> (Gewässer \triangleq kleiner Flachlandbach):

Max. 10 l/(s*ha) x 0,14 ha

= 1,40 l/s

9) Zuschlagsfaktor: Gem. ATV-A 117, Tabelle 2 → für geringeres Risiko

= 1,20 [-]

3 Emissionsbezogene Bewertung und Regelung gem. DWA-A-102

Flächenermittlung

Flächen-Einzugsgebiet: Gesamt Grundstücksgröße 2.685 m² = 0.27 ha

Gem. Ermittlung zur Bemessung RRB mit $\Psi = 0.9$ [-] Befestigte Fläche = AE, k, b: = 0.24 ha

Nicht befestigte Fläche = AE, k, nb: entfällt = 0.00 ha

Kanalisierte Einzugsgebietsfläche $A_{E, k} = A_{E, k, nb} + A_{E, k, b}$

A_{E, k, nb}_= nicht befestigte Fläche

 $A_{E, k, b}$ = befestigte Fläche

Bild 17: Gem. DWA-A-102

Flächenkategorisierung & Behandlungserfordernis

Folgend werden die angeschlossenen, befestigten Flächen im Plangebiet Ihrer spezifischen Belastungskategorie zugeordnet. Alle Flächen können der Belastungskategorie II zugeordnet werden.

Flächenart	Flächenspezifizierung	Flächengruppe	Belastungs-
		(Kurzeichen)	kategorie
Hof- & Wegeflä-	Hof- und Verkehrsflächen außerhalb von	V2	II
chen (VW), Ver-	Misch-, Gewerbe- und Industriegebieten		
kehrsflächen (V)	mit mäßigem Kfz-Verkehr (DTV 300 bis		
	15.000), z. B. Wohn- und Erschließungs-		
	straßen mit Park- und Stellplätzen, zwi-		
	schengemeindliche Straßen- und Wege-		
	verbindungen, Zufahrten zu Sammelga-		
	ragen		

Bild 18: Auszug Tabelle A1 aus DWA-A-102

Nachfolgend sind die aus dem Regelwerk maßgeblichen Bewertungen gem. Tabelle A.1 gekennzeichnet:

Tabelle A.1: Kategorisierung des Niederschlagswassers bebauter oder befestigter Flächen (in Verbindung mit nachstehenden Anwendungshinweisen)

Flächenart	Flächenspezifizierung	Flächen- gruppe (Kurz- zeichen)	Belastungs- kategorie
Dächer (D)	Alle Dachflächen ≤ 50 m² und Dachflächen > 50 m² mit Ausnahme der unter Flächengruppe SD1 oder SD2 fallenden	D	
Hof- und Wege- flächen (VW), Verkehrsflächen (V)	Fuß-, Rad- und Wohnwege, Hof- und Wegeflächen ohne Kfz-Verkehr in Sport- und Freizeitanlagen, Hofflächen ohne Kfz-Verkehr in Wohngebieten, wenn Fahrzeugwaschen dort unzulässig, Garagenzufahrten bei Einzelhausbebauung, Fußgängerzonen ohne Marktstände und seltenen Freiluftveranstaltungen	W1	I.
	Hof- und Verkehrsflächen in Wohngebieten mit geringem Kfz-Verkehr (DTV ≤ 300 oder ≤ 50 Wohneinheiten), z. B. Wohnstraßen mit Park- und Stellplätzen, Zufahrten zu Sammelgaragen, Park- und Stellplätze mit geringer Frequentierung [z. B. private Stellplätze]	V1	
	Marktplätze; Flächen, auf denen häufig Freiluftveranstaltungen stattfinden, Einkaufsstraßen in Wohngebieten	WV2	
	Hof- und Verkehrsflächen außerhalb von Misch-, Gewerbe- und Industriegebieten mit mäßigem Ktz-Verkehr (DTV 300 bis 15.000), z. B. Wohn- und Erschließungsstraßen mit Park- und Stellplätzen, zwischengemeindliche Straßen- und Wegeverbindungen, Zufahrten zu Sammelgaragen	V2	П
	Park- und Steuplatze mit mabiger Frequentierung (z. B. Besucherparkplätze bei Betrieben und Amtern) Hof- und Verkehrsflächen in Misch-, Gewerbe- und Industriegebieten mit geringem Ktz-Verkehr (DTV ≤ 2.000), mit Ausnahme der unter SV und SWW fallenden		

Tabelle A.1 (fortgesetzt)

Flächenart	Flächenspezifizierung	Flächen- gruppe (Kurz- zeichen)	Belastungs kategorie	
Hof- und Wege- flachen (VW), Verkehrsflächen (V)	- Verkehrsflächen außerhalb von Misch- und Gewerbe- und Industriegebieten mit hohem Kfz-Verkehr (DTV > 15.000) - Park- und Stellplafze mit hoher Frequentlerung (z. B. bei Einkaufsmarkten) - Hof- und Verkehrsflächen in Misch-, Gewerbe- und Industriegebieten mit mittlerem oder hohem Kfz-Verkehr (DTV > 2.000), mit Ausnahme der unter SV und SWV fallenden	V3	Ш	
	Gleisanlagen (G) mit Schotteroberbau auf freier Strecke sowie im Bahnhofsbereich bis 100.000 BRT (Bruttoregis- tertonneni/(Tag-Giels) mit Ausnahme der unter SG fallen- den	BG1	Ē	
	Start- und Landebahnen und weitere Betriebsflächen von Flughäfen (F) mit Ausnahme der unter SF fallenden	BF		
Betriebsflächen (B) und sonstige Flächen mit besonderer Belastung (S)	Landwirtschaftliche Hofflächen (L) mit Ausnahme der unter SL fallenden	BL	П	
	Gleisanlagen (G) mit Schotteroberbau im Bahnhofsbereich 100.000 BRT/[Tag-Gleis] sowle Gleisanlagen (G) mit fester Fahrbahn bis 100.000 BRT/ [Tag-Gleis] mit Ausnahme der unter SG fallenden	BG2		
	Dachflächen (D) mit hohen Anteilen (20 % bis 70 % der Gesamtdachfläche) an Materiallen, die zu signiffkanten Belastungen des Niederschlagswassers mit gewässer- schädlichen Substanzen führen	SD1		
	Dachflächen (D) mit sehr hohen Anteilen (>70 % der Gesamtdachfläche) an Materiallen, die zu signiffkanten Belastungen des Niederschlagswassers mit gewässer- schädlichen Substanzen führen	SD2		
	 Hof- und Verkehrsflachen sowie Park- und Stellplatze (V) Innerhalb von Misch-, Gewerbe- und Industriegebieten, auf denen sonstige besondere Beeinträchtigungen der Nieder- schlagswasserqualität zu erwarten sind, z. B. Lagerfla- chen, Zufahrten Steinbruch 	SV bzw. SVW	Ш	
	Flachen von Flughafen, auf denen eine Wasche von Flugzeugen erfolgt, sowie Flachen im unmittelbaren Umfeld von Flachen mit Betankung oder Entelsung von Flugzeugen	SF		

Tabelle A.1 (Ende)

Flächenart	Flächenspezifizierung		Belastungs- kategorie
Betriebsflächen (B) und sonstige Flächen mit besonderer Belastung (S)	landwirtschaftliche Hofflächen und sonstige Flächen (L) mit großen Tieransammlungen, z. B. Viehhaltungsbetriebe, Reiterhöfe oder landwirtschaftliche Hofflächen (L) mit sonstigen star- ken Beeinträchtigungen der Niederschlagswasserqualität, z. B. Flächen zur Fahrzeugreinigung	SL	
	Gleisanlagen (G) mit fester Fahrbahn > 100.000 BRT/(Tag-Gleis) mit Ausnahme der unter SG fallenden	BG3	
	Gleisanlagen mit betriebsbedingt stark erhöhter Beeinträchtigung der Niederschlagswasserqualität, z. B. durch starken Rangierbetrieb oder stark frequentierte Bremsstrecken, bei Vegetationskontrolle durch Herbizideinsatz	SG	
	Hof- und Verkehrsflächen auf Abwasser- und Abfallan- lagen (A) mit stark erhöhter Beeinträchtigung der Nieder- schlagswasserqualität, z. B. Flächen im unmittelbaren Umfeld von Flächen, auf denen Abfalle abgefüllt, verladen oder gelagert werden.	SA	

Projekt: Erschließung NBG "Am Klostergarten", OG Schwabenheim Hier: Erläuterungsbericht Verkehrsanlagen Vorplanung

Tabelle 3: Behandlungsbedürftigkeit von unterschiedlich belastetem Niederschlagswasser

Zielgewässer	Gering belastetes Niederschlagswasser (Kategorie I)	Mäßig belastetes Niederschlagswasser (Kategorie II)	Stark belastetes Niederschlagswasser (Kategorie III)	
Oberflächen- gewässer	Einleitung grundsätzlich ohne Behandlung möglich	Grundsätzlich geeignete technische Behandlung erforderlich		
Grundwasser	Versickerung und gegebenenfalls Behandlung gemäß Arbeitsblatt DWA-A 138			

Bild 22: Tabelle 3 aus DWA-A-102

Gemäß DWA-A 102, Tabelle 3 ist grundsätzlich eine Behandlung zur Stoffrückhaltung erforderlich.

Bilanzierung des Stoffabtrags

Tabelle 4: Rechenwerte zu mittleren Konzentrationen im Regenwasserabfluss und flächenspezifischem jährlichem Stoffabtrag $b_{\rm R,a,AFS63}$ für AFS63 der Belastungskategorien I bis III (Bezugsgröße angeschlossene befestigte Fläche $A_{\rm b,a} \cdot h_{\rm Na,eff}$ = 560 mm/a)

Kategorie	Mittlere Konzentrationen C _{RAFS63} im Jahresregenwasserabfluss in mg/l	Flächenspezifischer Stoffabtrag b _{R,a,AFS63} in kg/(ha·a)		
Kategorie I	50	280		
Kategorie II	95	530		
Kategorie III	136	760		

Bild 23: Tabelle 4 aus DWA-A-102

Herkunftsflächen und Belastungskategorien

Tabelle 6: Flächen mit Zuordnung zu Belastungskategorien und Flächengruppen

Flächentyp	Fläche A _{b,a}	davon			
1 lacitority p		Kategorie I	Kategorie II	Kategorie III	
Verkehrsflächen	0,27 ha	0 ha (V1)	0,27 ha (V2)	0 ha (V3)	
Summenwerte	0,27 ha	0 ha	0,27 ha	0 ha	
Anteile in Prozent	100	0 %	100 %	0 %	

Bild 24: Tabelle 6 aus DWA-A-102

Gesamtgebietsgröße ca. 0,27 ha.

Projekt-Nr.: 2152 Projekt:

Hier:

$$A_{b, a, l} = 0.27 \text{ ha x } 530 \text{ kg/(ha·a)} = 143.1 \text{ kg/ a}$$

Stoffabtrag insgesamt: $B_{R, a, AFS63} \Sigma = 143.1 \text{ kg/ a}$

Flächenspezifischer Stoffabtrag: $143,1 \text{ kg/ a} \div 0,27 \text{ ha} = 530 \text{ kg/ (ha·a)}$

Zulässiger, flächenspezifischer Stoffabtrag: = 280 kg/ (ha·a)

Der zulässige, flächenspez. Stoffabtrag von 280 kg/ (ha x a) kann nicht eingehalten werden. Eine Behandlung des Niederschlagswassers ist erforderlich:

Erforderlicher Stoffrückhalt (erforderlicher Wirkungsgrad nerf):

$$\eta_{erf,AFS63} = (1 - b_{R,e,zul.AFS63} / b_{R,a,AFS63}) \cdot 100 = (1 - \frac{280}{530}) \cdot 100 = \underline{47,20 \%}$$

Ergebnis:

Ein Vorklärung des Oberflächenwasser kann durch geeignete, technische Maßnahmen mit einem Wirkungsgrad von > 47 % auf das zulässige Minimum reduziert werden.

Wir empfehlen hier den Einsatz von Sedimentationsfiltern in den Straßenabläufen oder die Herstellung einer unterirdischen Sedimentationsanlage im Hauptschluss des Regenwasserkanals vor der Rückhaltung.

Die genaue Art der Ausführung muss noch im Zuge der Planung festgelegt werden.

Proiekt-Nr.: 2152

Erläuterungsbericht Verkehrsanlagen Vorplanung

Projekt: Erschließung NBG "Am Klostergarten", OG Schwabenheim Hier:

Rückhaltemulden

Bauliche Beschreibung

Das Rückhalteelement wird seitlich des Kreisverkehrs, am Abzweig zum Marktgelände, platziert werden. Die bauliche Herstellung der Rückhaltemöglichkeit erfolgt in Erdbauweise durch Auskofferung des anstehenden Bodens bis auf Höhe der geplanten, zum Ablauf geneigten Muldensohle, die mit einer Oberbodenschicht (d = mind. 15 cm) herzustellen ist. Überschüssiges Aushubmaterial aus dem Erdbecken, sowie den Verkehrsanlagen wird verbessert und als Dammschüttung im Bereich der Rückhaltung eingebaut. Die Böschungen werden i. d. R. in Neigungen von 1 : 2 ausgeführt. Die Fläche der Mulde beträgt ca. 100,00 m².

Eine Umzäunung der Mulde mittels Zaunanlage ist geplant. Die Mulde erhält eine Wartungszufahrt sowie eine Tor- und Türanlage.

Der Zulauf der Regenwassersammelleitung liegt ca. 0,70 m unter Geländeoberkante (GOK). Die geplante Muldensohle ist höhengleich mit der Einleitsohle vorgesehen, womit der Geländeeinschnitte des Regenrückhaltebeckens max. 1,00 m unter GOK liegen.

Mit einer Einstaufläche von ca. 100 m² und einer möglichen Einstautiefe von ca. 0,30 m ergeben sich rd. 30 m³ Rückhaltevolumen. (exkl. Wartungsweg)

Drosselabfluss

Der Drosselabfluss von ca. 1,40 l/s für das Regenrückhaltebecken wird mittels Mönchbauwerk mit integrierter Drossel gewährleistet.

Mittels Regenwassersammler wird das gesamte Oberflächenwasser über einen offenen Entwässerungsgraben in Richtung einem "namenlosen Graben", welcher als Einleitstelle dient geführt.

Hochwasserentlastung

Bei größeren Regenereignissen (> Bemessungsregenereignis 20 Jahre) erfolgt ein baubedingter Mehreinstau im Regenrückhaltebecken bis zum Überfall (evtl. zu planendes Einlaufbauwerk) in den offenen Entwässerungsgraben, welcher in den "namenlosen Graben" führt. Ohne Anordnung eines Überflutungsbauwerkes erfolgt ein Mehreinstau bis Bordfüllung und die zusätzlichen Wassermassen entwässern breitflächig über eine Wiesenfläche.

Projekt-Nr.:

Hier:

2152 Projekt:

Erschließung NBG "Am Klostergarten", OG Schwabenheim Erläuterungsbericht Verkehrsanlagen Vorplanung

Grunddaten Rückhalteelemente/ Einleitstelle

enrüc		

Erforderliches Rückhaltevolumen $= rd. 30 m^3$ = ca. 100 m² Einstaufläche Einstautiefe = 0.30 m

= Gemarkung Schwabenheim Lage

Flur: 18, Fl.-St.-Nr.: 221 u. 220

Hochwert = 5531596.552 Rechtswert = 32434955.229

Geplante Einleitstelle "Gewässer":

= Schwabenheim Lage: Gemarkung

Flur: 18, Fl.-St.-Nr.: 462

Hochwert = 5531619.536 Rechtswert = 32434930.825

5 Beleuchtung

Die Straßenleuchten werden an maßgeblichen Punkten z.B. Fahrbahnquerungen angeordnet. Dabei wird ein Abstand von ca. 25 nicht überschritten. Die genauen Standorte sind dem Lageplan der Anlage 4 zu entnehmen.

6 Kosten

Die reinen Baukosten der Erschließungsstraßen, inklusive der Straßenbeleuchtung, sind in der Anlage "Kostenschätzung" aufgeführt.

OG Schwabenheim, Idar-Oberstein, 27.09.2023

